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Abstract—Today’s productivity programmers, such as scientists who need to
write code to do science, are typically forced to choose between productive
and maintainable code with modest performance (e.g. Python plus native
libraries such as SciPy [SciPy]) or complex, brittle, hardware-specific code that
entangles application logic with performance concerns but runs two to three
orders of magnitude faster (e.g. C++ with OpenMP, CUDA, etc.). The dynamic
features of modern productivity languages like Python enable an alternative
approach that bridges the gap between productivity and performance. SEJITS
(Selective, Embedded, Just-in-Time Specialization) embeds domain-specific
languages (DSLs) in high-level languages like Python for popular computational
kernels such as stencils, matrix algebra, and others. At runtime, the DSLs
are “compiled” by combining expert-provided source code templates specific
to each problem type, plus a strategy for optimizing an abstract syntax tree
representing a domain-specific but language-independent representation of the
problem instance. The result is efficiency-level (e.g. C, C++) code callable
from Python whose performance equals or exceeds that of handcrafted code,
plus performance portability by allowing multiple code generation strategies
within the same specializer to target different hardware present at runtime, e.g.
multicore CPUs vs. GPUs. Application writers never leave the Python world, and
we do not assume any modification or support for parallelism in Python itself.

We present Asp (“Asp is SEJITS for Python”) and initial results from sev-
eral domains. We demonstrate that domain-specific specializers allow highly-
productive Python code to obtain performance meeting or exceeding expert-
crafted low-level code on parallel hardware, without sacrificing maintainability or
portability.

Index Terms—parallel programming, specialization

Introduction

It has always been a challenge for productivity programmers,
such as scientists who write code to support doing science,
to get both good performance and ease of programming. This
is attested by the proliferation of high-performance libraries
such as BLAS, OSKI [OSKI] and FFTW [FFTW], by domain-
specific languages like SPIRAL [SPIRAL], and by the popu-
larity of the natively-compiled SciPy [SciPy] libraries among
others. To make things worse, processor clock scaling has run
into physical limits, so future performance increases will be
the result of increasing hardware parallelism rather than single-
core speedup, making programming even more complex. As
a result, programmers must choose between productive and
maintainable but slow-running code on the one hand, and
performant but complex and hardware-specific code on the
other hand.

The corresponding author is with Department of Computer Science, UC
Berkeley, e-mail: skamil@cs.berkeley.edu.

The usual solution to bridging this gap is to provide
compiled native libraries for certain functions, as the SciPy
package does. However, in some cases libraries may be
inadequate or insufficient. Various families of computational
patterns share the property that while the strategy for mapping
the computation onto a particular hardware family is common
to all problem instances, the specifics of the problem are not.
For example, consider a stencil computation, in which each
point in an n-dimensional grid is updated with a new value that
is some function of its neighbors’ values. The general strategy
for optimizing sequential or parallel code given a particular
target platform (multicore, GPU, etc.) is independent of the
specific function, but because that function is unique to each
application, capturing the stencil abstraction in a traditional
compiled library is awkward, especially in the efficiency level
languages typically used for performant code (C, C++, etc.)
that don’t support higher-order functions gracefully.

Even if the function doesn’t change much across appli-
cations, work on auto-tuning [ATLAS] has shown that for
algorithms with tunable implementation parameters, the per-
formance gain from fine-tuning these parameters compared to
setting them naively can be up to 5×. [SC08] Indeed, the
complex internal structure of auto-tuning libraries such as the
Optimized Sparse Kernel Interface [OSKI] is driven by the
fact that often runtime information is necessary to choose the
best execution strategy or tuning-parameter values.

We therefore propose a new methodology to address this
performance-productivity gap, called SEJITS (Selective Em-
bedded Just-in-Time Specialization) [Cat09]. This method-
ology embeds domain-specific languages within high-level
languages, and the embedded DSLs are specialized at runtime
into high-performance, low-level code by leveraging metapro-
gramming and introspection features of the host languages,
all invisibly to the application programmer. The result is
performance-portable, highly-productive code whose perfor-
mance rivals or exceeds that of implementations hand-written
by experts.

The insight of our approach is that because each em-
bedded DSL is specific to just one type of computational
pattern (stencil, matrix multiplication, etc.), we can select
an implementation strategy and apply optimizations that take
advantage of domain knowledge in generating the efficiency-
level code. For example, returning to the domain of sten-
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cils, one optimization called time skewing [Wonn00] involves
blocking in time for a stencil applied repeatedly to the same
grid. This transformation is not meaningful unless we know
the computation is a stencil and we also know the stencil’s
“footprint,” so a generic optimizing compiler would be unable
to identify the opportunity to apply it.

We therefore leverage the dynamic features of modern lan-
guages like Python to defer until runtime what most libraries
must do at compile time, and to do it with higher-level domain
knowledge than can be inferred by most compilers.

Asp: Approach and Mechanics

High-level productivity or scripting languages have evolved
to include sophisticated introspection and FFI (foreign func-
tion interface) capabilities. We leverage these capabilities in
Python to build domain- and machine-specific specializers
that transform user-written code in a high-level language in
various ways to expose parallelism, and then generate code
for a a specific machine in a low-level language. Then, the
code is compiled, linked, and executed. This entire process
occurs transparently to the user; to the user, it appears that an
interpreted function is being called.

Asp (a recursive acronym for “Asp is SEJITS for Python”)
is a collection of libraries that realizes the SEJITS approach
in Python, using Python both as the language in which
application programmers write their code (the host language)
and the language in which transformations and code generation
are carried out (the transformation language). Note that in
general the host and transformation languages need not be the
same, but Python happily serves both purposes well.

Specifically, Asp provides a framework for creating Python
classes (specializers), each of which represents a particular
computational pattern. Application writers subclass these to
express specific problem instances. The specializer class’s
methods use a combination of pre-supplied low-level source
code snippets (templates) and manipulation of the Python
abstract syntax tree (AST, also known as a parse tree) to
generate low-level source code in an efficiency-level language
(ELL) such as C, C++ or CUDA.

For problems that call for passing in a function, such as
the stencil example above, the application writer codes the
function in Python (subject to some restrictions) and the
specializer class iterates over the function’s AST to lower
it to the target ELL and inline it into the generated source
code. Finally, the source code is compiled by an appropriate
conventional compiler, the resulting object file is dynamically
linked to the Python interpreter, and the method is called like
a native library.

Python code in the application for which no specializer
exists is executed by Python as usual. As we describe below, a
recommended best practice for creating new specializers is that
they include an API-compatible, pure-Python implementation
of the kernel(s) they specialize in addition to providing a code-
generation-based implementation, so that every valid program
using Asp will also run in pure Python without Asp (modulo
removing the import directives that refer to Asp). This allows
the kernel to be executed and debugged using standard Python
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Figure 1: Separation of concerns in Asp. App authors write code that
is transformed by specializers, using Asp infrastructure and third-
party libraries.

tools, and provides a reference implementation for isolating
bugs in the specializer.

One of Asp’s primary purposes is separating application and
algorithmic logic from code required to make the application
run fast. Application writers need only program with high-
level class-based constructs provided by specializer writers. It
is the task of these specializer writers to ensure the constructs
can be specialized into fast versions using infrastructure pro-
vided by the Asp team as well as third-party libraries. An
overview of this separation is shown in Figure 1.

An overview of the specialization process is as follows.
We intercept the first call to a specializable method, grab
the AST of the Python code of the specializable method, and
immediately transform it to a domain-specific AST, or DAST.
That is, we immediately move the computation into a domain
where problem-specific optimizations and knowledge can be
applied, by applying transformations to the DAST. Returning
once again to the stencil, the DAST might have nodes such
as “iterate over neighbors” or “iterate over all stencil points.”
These abstract node types, which differ from one specializer
to another, will eventually be used to generate ELL code
according to the code generation strategy chosen; but at this
level of representation, one can talk about optimizations that
make sense for stencils specifically as opposed to those that
make sense for iteration generally.

After any desired optimizations are applied to the domain-
specific (but language- and platform-independent) representa-
tion of the problem, conversion of the DAST into ELL code
is handled largely by CodePy [CodePy]. Finally, the gener-
ated source code is compiled by an appropriate downstream
compiler into an object file that can be called from Python.
Code caching strategies avoid the cost of code generation and
compilation on subsequent calls.

In the rest of this section, we outline Asp from the point of
view of application writers and specializer writers, and outline
the mechanisms the Asp infrastructure provides.

Application Writers

From the point of view of application writers, using a special-
izer means installing it and using the domain-specific classes
defined by the specializer, while following the conventions
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1 1 1
1 1 1
1 1 1

→

0 0 0
0 4 0
0 0 0

from stencil_kernel import *

class ExampleKernel(StencilKernel):
def kernel(self, in_grid, out_grid):
for x in out_grid.interior_points():
for y in in_grid.neighbors(x, 1):
out_grid[x] = out_grid[x] + in_grid[y]

in_grid = StencilGrid([5,5])
in_grid.data = numpy.ones([5,5])
out_grid = StencilGrid([5,5])
ExampleKernel().kernel(in_grid, out_grid)

Figure 2: Example stencil application. Colored source lines match
up to nodes of same color in Figure 4.

outlined in the specializer documentation. Thus, application
writers never leave the Python world. As a concrete exam-
ple of a non-trivial specializer, our structured grid (stencil)
specializer provides a StencilKernel class and a StencilGrid
class (the grid over which a stencil operates; it uses NumPy
internally). An application writer subclasses the StencilKernel
class and overrides the function kernel(), which operates
on StencilGrid instances. If the defined kernel function is
restricted to the class of stencils outlined in the documentation,
it will be specialized; otherwise the program will still run in
pure Python.

An example using our stencil specializer’s constructs is
shown in Figure 2.

Specializer Writers

Specializer writers often start with an existing implementation
of a solution, written in an ELL, for a particular problem type
on particular hardware. Such solutions are devised by human
experts who may be different from the specializer writer,
e.g. numerical-analysis researchers or auto-tuning researchers.
Some parts of the solution which remain the same between
problem instances, or the same with very small changes, can be
converted into templates, which are simply ELL source code
with a basic macro substitution facility, supplied by [Mako],
for inserting values into fixed locations or “holes” at runtime.

Other parts of the ELL solution may vary widely or in a
complex manner based on the problem instance. For these
cases, a better approach is to provide a set of rules for trans-
forming the DAST of this type of problem in order to realize
the optimizations present in the original ELL code. Finally,
the specializer writer provides high-level transformation code
to drive the entire process.

Specializer writers use Asp infrastructure to build their
domain-specific translators. In Asp, we provide two ways
to generate low-level code: templates and abstract syntax
tree (AST) transformation. For many kinds of computations,
using templates is sufficient to translate from Python to C++,
but for others, phased AST transformation allows application
programmers to express arbitrary computations to specialize.

In a specializer, the user-defined kernel is first translated
into a Python AST, and analyzed to see if the code supplied
by the application writer adheres to the restrictions of the

specializer. Only code adhering to a narrow subset of Python,
characterizing the embedded domain-specific language, will
be accepted. Since specializer writers frequently need to
iterate over ASTs, the Asp infrastructure provides classes that
implement a visitor pattern on these ASTs (similar to Python’s
ast.NodeTransformer) to implement their specialization
phases. The final phase transforms the DAST into a target-
specific AST (e.g, C++ with OpenMP extensions). The Ex-
ample Walkthrough section below demonstrates these steps in
the context of the stencil kernel specializer.

Specializer writers can then use the Asp infrastructure to
automatically compile, link, and execute the code in the final
AST. In many cases, the programmer will supply several
code variants, each represented by a different ASTs, to the
Asp infrastructure. Specializer-specific logic determines which
variant to run; Asp provides functions to query the hardware
features available (number of cores, GPU, etc.). Asp provides
for capturing and storing performance data and caching com-
piled code across runs of the application.

For specializer writers, therefore, the bulk of the work con-
sists of exposing an understandable abstraction for specializer
users, ensuring programs execute whether specialized or not,
writing test functions to determine specializability (and giving
the user meaningful feedback if not), and expressing their
translations as phased transforms.

Currently, specializers have several limitations. The most
important current limitation is that specialized code cannot call
back into the Python interpreter, largely because the interpreter
is not thread safe. We are implementing functionality to allow
serialized calls back into the interpreter from specialized code.

In the next section, we show an end-to-end walkthrough of
an example using our stencil specializer.

Example Walkthrough

In this section we will walk through a complete example of a
SEJITS translation and execution on a simple stencil example.
We begin with the application source shown in Figure 2. This
simple two-dimensional stencil walks over the interior points
of a grid and for each point computes the sum of the four
surrounding points.

This code is executable Python and can be run and debugged
using standard Python tools, but is slow. By merely modifying
ExampleKernel to inherit from the StencilKernel base class,
we activate the stencil specializer. Now, the first time the
kernel() function is called, the call is redirected to the
stencil specializer, which will translate it to low-level C++
code, compile it, and then dynamically bind the machine code
to the Python environment and invoke it.

The translation performed by any specializer consists of five
main phases, as shown in Figure 3:

1. Front end: Translate the application source into a
domain-specific AST (DAST)

2. Perform platform-independent optimizations on
the DAST using domain knowledge.

3. Select a platform and translate the DAST into a
platform-specific AST (PAST).

4. Perform platform-specific optimizations using
platform knowledge.
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Figure 3: Pipeline architecture of a specializer.

5. Back end: Generate low-level source code, com-
pile, and dynamically bind to make available from
the host language.

As with any pipeline architecture, each phase’s component
is reusable and can be easily replaced with another com-
ponent, and each component can be tested independently.
This supports porting to other application languages and other
hardware platforms, and helps divide labor between domain
experts and platform performance experts. These phases are
similar to the phases of a typical optimizing compiler, but are
dramatically less complex due to the domain-specific focus
and the Asp framework, which provides utilities to support
many common tasks, as discussed in the previous section.

In the stencil example, we begin by invoking the Python
runtime to parse the kernel() function and produce the
abstract syntax tree shown in Figure 4. The front end walks
over this tree and matches certain patterns of nodes, replacing
them with other nodes. For example, a call to the function
interior_points() is replaced by a domain-specific
StencilInterior node. If the walk encounters any pattern of
Python nodes that it doesn’t handle, for example a function
call, the translation fails and produces an error message, and
the application falls back on running the kernel() function
as pure Python. In this case, the walk succeeds, resulting in the
DAST shown in Figure 4. Asp provides utilities to facilitate
visiting the nodes of a tree and tree pattern matching.

The second phase uses our knowledge of the stencil domain
to perform platform-independent optimizations. For example,
we know that a point in a two-dimensional grid has four
neighbors with known relative locations, allowing us to unroll
the innermost loop, an optimization that makes sense on all
platforms.

The third phase selects a platform and translates to a
platform-specific AST. In general, the platform selected will
depend on available hardware, performance characteristics of
the machine, and properties of the input (such as grid size).
In this example we will target a multicore platform using the
OpenMP framework. At this point the loop over the interior
points is mapped down to nested parallel for loops, as shown

Call
interior_points

For x

Call
neighbors(x,1)

For y

:=

out_grid[x] +

out_grid[x] in_grid[y]

StencilInterior
out_grid, x

StencilNeighbor
in_grid, y, 1

:=

out_grid[x] +

out_grid[x] in_grid[y]

Figure 4: Left: Initial Python abstract syntax tree. Right: Domain-
specific AST.

:=

Initialize
variables

:= := :=

block scope {... }

parallel for(...)

parallel for(...)

Figure 5: Platform-specific AST.

in Figure 5. The Asp framework provides general utilities for
transforming arithmetic expressions and simple assignments
from the high-level representation used in DASTs to the low-
level platform-specific representation, which handles the body
of the loop.

Because the specializer was invoked from the first call of
the kernel() function, the arguments passed to that call are
available. In particular, we know the dimensions of the input
grid. By hardcoding these dimensions into the AST, we enable
a wider variety of optimizations during all phases, particularly
phases 4 and 5. For example, on a small grid such as the 8x8
blocks encountered in JPEG encoding, the loop over interior
points may be fully unrolled.

The fourth phase performs platform-specific optimizations.
For example, we may partially unroll the inner loop to reduce
branch penalties. This phase may produce several ASTs to
support run-time auto-tuning, which times several variants
with different optimization parameters and selects the best one.

Finally, the fifth phase, the backend, is performed entirely by
components in the Asp framework and the CodePy library. The
PAST is transformed into source code, compiled, and dynam-
ically bound to the Python environment, which then invokes it
and returns the result to the application. Interoperation between
Python and C++ uses the Boost.Python library, which handles
marshalling and conversion of types.

The compiled kernel() function is cached so that if the
function is called again later, it can be re-invoked directly
without the overhead of specialization and compilation. If the
input grid dimensions were used during optimization, the input
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dimensions must match on subsequent calls to reuse the cached
version.

Results

SEJITS claims three benefits for productivity programmers.
The first is performance portability. A single specializer
can include code generation strategies for radically different
platforms, and even multiple code variants using different
strategies on the same platform depending on the problem
parameters. The GMM specializer described below illustrates
this advantage: a single specializer can produce code either
for NVIDIA GPUs (in CUDA) or x86 multicore processors
(targeting the Cilk Plus compiler), and the same Python
application can run on either platform.

The second benefit is the ability to let application writers
work with patterns requiring higher-order functions, something
that is cumbersome to do in low-level languages. We can inline
these functions into the emitted source code and let the low-
level compiler optimize the solution using the maximum avail-
able information. Our stencil specializer, as described below,
demonstrates this benefit; the performance of the generated
code reaches 87% of the achievable memory bandwidth of
the multicore machine on which it runs.

The third benefit is the ability to take advantage of auto-
tuning or other runtime performance optimizations even for
simple problems. Our matrix-powers specializer, which com-
putes {x,Ax,A2x, ...,Akx} for a sparse matrix A and vector
x (an important computation in Krylov-subspace solvers),
demonstrates this benefit. Its implementation uses a recently-
developed communication-avoiding algorithm for matrix pow-
ers that runs about an order of magnitude faster than
Python+SciPy (see performance details below) while remain-
ing essentially API-compatible with SciPy. Beyond the in-
herent performance gains from communication-avoidance, a
number of parameters in the implementation can be tuned
based on the matrix structure in each individual problem
instance; this is an example of an optimization that cannot
easily be done in a library.

Stencil

To demonstrate the performance and productivity effective-
ness of our stencil specializer, we implemented two different
computational stencil kernels using our abstractions: a 3D
laplacian operator, and a 3D divergence kernel. For both
kernels, we run a simple benchmark that iteratively calls our
specializer and measures the time for applying the operator
(we ensure the cache is cleared in between calls). Both
calculations are memory-bound; that is, they are limited by the
available bandwidth from memory. Therefore, in accordance
to the roofline model [SaWi09], we measure performance
compared to measured memory bandwidth performance using
the parallel STREAM [STREAM] benchmark.

Figure 6 shows the results of running our kernels for a 2563

grid on a single-socket quad-core Intel Core i7-840 machine
running at 2.93 GHz, using both the OpenMP and Cilk Plus
backends. First-run time is not shown; the code generation and
compilation takes tens of seconds (mostly due to the speed
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Figure 6: Performance as fraction of memory bandwidth peak for
two specialized stencil kernels. All tests compiled using the Intel C++
compiler 12.0 on a Core i7-840.

Figure 7: Runtimes of GMM variants as the D parameter is varied
on an Nvidia Fermi GPU (lower is better). The specializer picks the
best-performing variant to run.

of the Intel compiler). In terms of performance, for the 3D
laplacian, we obtain 87% of peak memory bandwidth, and
64% of peak bandwidth for the more cache-unfriendly diver-
gence kernel, even though we have only implemented limited
optimizations. From previous work [Kam10], we believe that,
by adding only a few more tuning parameters, we can obtain
over 95% of peak performance for these kernels. In contrast,
pure Python execution is nearly three orders of magnitude
slower.

In terms of productivity, it is interesting to note the dif-
ference in LoC between the stencils written in Python and
the produced low-level code. Comparing the divergence kernel
with its best-performing produced variant, we see an increase
from five lines to over 700 lines--- an enormous difference.
The Python version expresses the computation succinctly;
using machine characteristics to express fast code requires
expressing the stencil more verbosely in a low-level language.
With our specialization infrastructure, programmers can con-
tinue to write succinct code and have platform-specific fast
code generated for them.

Gaussian Mixture Modeling

Gaussian Mixture Models (GMMs) are a class of statistical
models used in a wide variety of applications, including image
segmentation, speech recognition, document classification, and
many other areas. Training such models is done using the Ex-
pectation Maximization (EM) algorithm, which is iterative and
highly data parallel, making it amenable to execution on GPUs
as well as modern multicore processors. However, writing high
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Figure 8: Overall performance of specialized GMM training versus
original optimized CUDA algorithm. Even including specializer over-
head, the specialized EM training outperforms the original CUDA
implementation.

performance GMM training algorithms are difficult due to the
fact that different code variants will perform better for different
problem characteristics. This makes the problem of producing
a library for high performance GMM training amenable to the
SEJITS approach.

A specializer using the Asp infrastructure has been built
by Cook and Gonina [Co10] that targets both CUDA-capable
GPUs and Intel multicore processors (with Cilk Plus). The
specializer implements four different parallelization strategies
for the algorithm; depending on the sizes of the data structures
used in GMM training, different strategies perform better.
Figure 7 shows performance for different strategies for GMM
training on an NVIDIA Fermi GPU as one of the GMM
parameters are varied. The specializer uses the best-performing
variant (by using the different variants to do one iteration
each, and selecting the best-performing one) for the majority
of iterations. As a result, even if specialization overhead (code
generation, compilation/linking, etc.) is included, the special-
ized GMM training algorithm outperforms the original, hand-
tuned CUDA implementation on some classes of problems, as
shown in Figure 8.

Matrix Powers

Recent developments in communication-avoiding algorithms
[Bal09]_(AF: need canonical citation here, as well as specific
cite for Erin and Nick’s CA-matrix powers presentation at
EuroSomethingOrOther) have shown that the performance of
parallel implementations of several algorithms can be substan-
tially improved by partitioning the problem so as to do re-
dundant work in order to minimize inter-core communication.
One example of an algorithm that admits a communication-
avoiding implementation is matrix powers [Hoe10]: the com-
putation {x,Ax,A2x, ...,Akx} for a sparse matrix A and vector
x, an important building block for communication-avoiding
sparse Krylov solvers. A specializer currently under devel-
opment enables efficient parallel computation of this set of
vectors on multicore processors.

The specializer generates parallel communication avoiding
code using the pthreads library that implements the PA1
[Hoe10] kernel to compute the vectors more efficiently than
just repeatedly doing the multiplication A × x. The naive
algorithm, shown in Figure 9, requires communication at each
level. However, for many matrices, we can restructure the
computation such that communication only occurs every k

Figure 9: Left: Naive Akx computation. Communication required at
each level. Right: Algorithm PA1 for communication-avoiding matrix
powers. Communication occurs only after k levels of computation, at
the cost of redundant computation.

steps, and before every superstep of k steps, all communication
required is completed. At the cost of redundant computation,
this reduces the number of communications required. Figure
9 shows the restructured algorithm.

The specializer implementation further optimizes the PA1
algorithm using traditional matrix optimization techniques
such as cache and register blocking. Further optimization using
vectorization is in progress.

SEJITS SEJITS SpecializerSpecializer for the Matrix Powers Kernelfor the Matrix Powers Kernel
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Future directions

! Implements the matrix powers kernel: Given sparse 
matrix A, vector x, and number k, compute Ax, A2x, 
… Akx
! Or something closely related, such as (A- 1)x,   

(A- 2)(A- 1)x, ... 
! The linear span of these vectors is known as a 

“Krylov subspace” and is used in several iterative 
solver methods

! The goal of this specializer: to enable programmers 
to implement Krylov subspace methods in Python 
and obtain good parallel performance

! Divide responsibility for computing vector values 
among the threads; partition matrix appropriately
! However, each thread will usually need access 

to some other threads’ values
! Naïve approach requires communication at 

each level – example for tridiagonal matrix: 
((Ax)i depends on xi-1 and xi+1)

! Further subdivide matrix, into blocks that fit in cache
! By processing one cache block at a time, each row 

of matrix will be loaded from DRAM just once 
instead of k times

! Use SIMD instructions where applicable
! Useful when register tiling is being used

! Improve auto-tuning capabilities
! Integration with AspDB

! More algorithmic variants
! Explicit cache blocking (better memory access 

pattern at expense of extra computation)
! More variants on the computation performed

! Different kinds of basis: any set { x, p1(A)x, 
p2(A)x, … pk(A)x } where pi is an i-th degree 
polynomial will span the same space.

! Preconditioning: Ax, MAx, AMAx, … (MA)kx
! Different data types for matrix/vector entries: 

single-precision floats, complex numbers
! Parallelize other operations used in solvers
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! For many matrices, a communication-avoiding 
approach is beneficial:
! Only communicate every k steps: give each 

thread everything it needs for the for the next k
powers up front

! Comes at the expense of extra flops: higher k
means more redundant computation
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for (jb = A->browptr[ib]; jb < A->browptr[ib+1]; ++jb) {
%     for i in xrange(b_m):
%       for j in xrange(b_n):

y[ib*${b_m} + ${i}] +=
A->bvalues[jb*${b_m}*${b_n} + ${i}*${b_n} + ${j}]
* x[A->bcolidx[jb]*${b_n} + ${j}];

%       endfor
%     endfor

}

Code generation

! SEJITS templates allow for nearly seamless 
integration of normal and unrolled loops

! Template code for one row of matrix-vector 
multiplication, for a b_m by b_n register tile size:

Performance

! Performance of bare matrix powers kernel is 
improved significantly over plain scipy.sparse code 
for a variety of test matrices:

! Preliminary implementation of conjugate 
gradient (CG) solver using the matrix powers 
kernel also shows speedup:
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Figure 10: Results comparing communication-avoiding CG with our
matrix powers specializer and SciPy’s default solver, run on an Intel
Nehalem machine.

To see what kinds of performance improvements are pos-
sible using the specialized communication-avoiding matrix
powers kernel, Morlan implemented a conjugate gradient (CG)
solver in Python that uses the specializer. Figure 10 shows
the results for three test matrices and compares performance
against scipy.linalg.solve which calls the LAPACK
dgesv routine. Even with just the matrix powers kernel
specialized, the CA CG already outperforms the native solver
routine used by SciPy.

Related Work

Allowing domain scientists to program in higher-level lan-
guages is the goal of a number of projects in Python, in-
cluding SciPy [SciPy] which brings Matlab-like functionality
for numeric computations into Python. In addition, domain-
specific projects such as Biopython [Biopy] and the Python
Imaging Library (PIL) [PIL] also attempt to hide complex
operations and data structures behind Python infrastructure,
making programming simpler for users.

Another approach, used by the Weave subpackage of SciPy,
allows users to express C++ code that uses the Python C API
as strings, inline with other Python code, that is then compiled
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and run. Cython [Cython] is an effort to write a compiler
for a subset of Python, while also allowing users to write
extension code in C. Another instance of the SEJITS approach
is Copperhead [Cat09], which implements SEJITS targeting
CUDA GPUs for data parallel operations.

The idea of using multiple code variants, with different
optimizations applied to each variant, is a cornerstone of auto-
tuning. Auto-tuning was first applied to dense matrix compu-
tations in the PHiPAC (Portable High Performance ANSI C)
library [PHiPAC]. Using parametrized code generation scripts
written in Perl, PHiPAC generated variants of generalized
matrix multiply (GEMM) with loop unrolling, cache blocking,
and a number of other optimizations, plus a search engine,
to, at install time, determine the best GEMM routine for
the particular machine. After PHiPAC, auto-tuning has been
applied to a number of domains including sparse matrix-
vector multiplication (SpMV) [OSKI], Fast Fourier Trans-
forms (FFTs) [SPIRAL], and multicore versions of stencils
[KaDa09], [Kam10], [Tang11], showing large improvements
in performance over simple implementations of these kernels.

Conclusion

We have presented a new approach to bridging the “pro-
ductivity/efficiency gap”: rather than relying solely on li-
braries to allow productivity programmers to remain in high-
level languages, we package the expertise of human experts
as a collection of code templates in a low-level language
(C++/OpenMP, etc.) and a set of transformation rules to
generate and optimize problem-specific ASTs at runtime. The
resulting low-level code runs as fast or faster than the original
hand-produced version.

Unlike many prior approaches, we neither propose a stan-
dalone DSL nor try to imbue a full compiler with the intel-
ligence to “auto-magically” recognize and optimize compute-
intensive problems. Rather, the main contribution of SEJITS
is separation of concerns: expert programmers can express
implementation optimizations that make sense only for a
particular problem (and perhaps only on specific hardware),
and package this expertise in a way that makes it widely
reusable by Python programmers. Application writers remain
oblivious to the details of specialization, making their code
simpler and shorter as well as performance-portable.

We hope that our promising initial results will encourage
others to contribute to building up the ecosystem of Asp
specializers.
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